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Abstract: The balanced Procrustes problem with XT = sX and XXT = aX+ bIn constraints are considered. By
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1 Introduction
Given matrices A, B ∈ IRm×n, we consider the fol-
lowing matrix equation

AX = B (1)

and its corresponding least squares problem (balanced
Procrustes problem)

min
X

∥AX −B∥F (2)

with XT = sX and

XXT = aX + bIn (3)

constraints, where the unknown matrix X ∈ IRn×n

and scalars s, a, b satisfy

a2 + 4b > 0, for s = 1; (4)
a = 0, b > 0, for s = −1.

And, n is even if s = −1.
In the passed decades, the equation (1) with dif-

ferent constraints, together with its corresponding
least squares problem (2), has been interested widely,
more and more people have been attracted in this
topic [1, 2, 3, 4, 6, 7, 8, 9, 10, 14, 16, 17, 18, 19].
For the equation (1) with reflexive and anti-reflexive
constraints, Peng and Hu transformed the constrained
equation to two independent unconstrained ones, with

which they obtained the existence condition and de-
tailed structure of constrained solutions [13]. For the
equation (1) with X = XT and XXT = In con-
straints, Meng and Hu constructed its general solution
by four times singular value decompositions and one
eigenvalue decomposition of related matrices [12],
Qiu and Wang proposed a more efficient algorithm to
obtained the solution by one eigenvalue decomposi-
tion in [15]. For the equation (1) with X = −XT

and XXT = In constraints, Meng, Hu and Zhang
obtained its general solution in terms of C-S decom-
position and Schur decomposition [11].

In this paper, we consider the balanced Procrustes
problem (2) with constraints (3), our ideas are based
on the following observations:

1) If the equation (1) is consistent, then its solutions
must be included in that of the problem (2) with
zero residual. Hence, the constrained equation
(1) can be regarded as the special case of the cor-
responding balanced Procrustes problem (2).

2) By selecting the suitable numbers of a, b in (3),
we can get the constrained problems in [12] and
[11] respectively. From this point, our problem
maybe is more general.

3) The selection of parameters a, b in (3) is to guar-
antee the unknown matrix X has two clusters of
different eigenvalues.
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Note that

∥AX −B∥2F = trace(AX −B)T (AX −B) (5)

= trace(ATAXXT )− 2trace(XTATB) + ∥B∥2F .

In [5], Golub & Van Loan constructed the general so-
lution of the problem (2) with orthogonal constraint
by a simple method: with the constraint, the equiv-
alent form of (5) is transformed to minimize a trace
composed by a linear mapping of unknown X , and the
constrained solution is obtained by one time SVD of
the matrix product of A and B. Motivated by this idea,
we consider the problem (2) with constraints (3) with
the same strategy. That is, the constrained problem
can be simplified as the following minimizing prob-
lem :

min
XT=sX, XXT=aX+bIn

trace(WX) (6)

with W = aATA − 2sATB. Therefore, we ask for
the constrained solutions only by one time eigenvalue
decomposition or the real Schur decomposition of the
matrix product generated by A and B. Compared with
the existing methods in [11, 12], we have the follow-
ing improvements:

1) For the equation (1) with symmetric orthogo-
nal constraint which was considered in [12], we
continue along the same line of research of [15]
by Qiu and Wang, and generalize the constraint
from symmetric orthogonality to (3).

2) For the equation (1) with skew-symmetric or-
thogonal constraint which was considered in
[11], we regard it as the special case of the prob-
lem (2) with the same constraint and obtain its
constrained solution only by one real-Shur de-
compositions. By computing again and again,
we find our methods maybe are more efficient
(One can turn to Example 1 of section 5 for de-
tails).

3) Our conclusions can be generalized to the
corresponding P -commuting constrained least
squares problems and the extended matrix equa-
tions AX = B, XC = D with the same con-
straints.

The rest of paper is organized as follows. We
consider the problem (2) with constraints (3) in Sec-
tion 2. The corresponding P -commuting constrained
problems are discussed in Section 3. In Section 4, as a
special case of the problem (2), we consider the least
squares problem of the equations AX = B, XC =
D with the same constraints. Numerical examples are

given in Section 5 to display the efficiency of the al-
gorithms.

Notations. In this paper, IRm×n denotes the
space of real m × n matrix. For any matrix X =
(xij) ∈ IRm×n, trace(X) is its trace, ∥ · ∥F is the
Frobenius norm of matrix. If X is a square matrix
with order n,

DX = diag(x11, . . . , xnn) (7)

is the diagonal matrix composed by the diagonal ele-
ments of X . We also denote by In the identity matrix
with order n. The matrix Om×n is m×n zero matrix,
On is n× n zero matrix and sign(.) refers to the sym-
bolic function, respectively. Moreover, for b > 0, we
denote

D̃b =

(
0

√
b

−
√
b 0

)
(8)

2 Solutions to the balanced Pro-
crustes problem (2) with (3) con-
straints

With constraints (3),

trace(WX) = trace(XTW T )

= trace(sXW T ) = trace(sW TX),

then

trace(WX) =
1

2
trace((W + sW T )X).

Hence, the problem (2) with constraints (3) is equiva-
lent to

min
XT=sX, XXT=aX+bIn

trace((W + sW T )X). (9)

2.1 Case s = 1

If s = 1, the matrix (W + sW T ) is symmetric. The
condition (3) is equivalent to

X2 = aX + bIn. (10)

Let λ be the eigenvalue of X , it satisfies

λ2 − aλ− b = 0. (11)

Denote by ∆ = a2 + 4b. With (4), we have ∆ > 0,
which implies equation (11) has two different roots

λ1,2 =
a±

√
∆

2
. (12)
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So the constrained solution X has two clusters of
eigenvalues, we denote them by

λ1 > λ2.

Let an eigenvalue decomposition of the symmetric
matrix W +W T be

W +W T = Q

 Λ1

Λ2

On−r1−r2

QT , (13)

where

Λ1 = diag(λ+
1 , . . . , λ

+
r1),

Λ2 = diag(λ−
1 , . . . , λ

−
r2),

r1 + r2 = rank(W +W T ),
λ+
i > 0, λ−

j < 0,

i = 1, . . . , r1, j = 1, . . . , r2,
QTQ = In.

Set X̃ = QTXQ and denote its element by

X̃ = (x̃ij) , i, j = 1, . . . , n. (14)

The constraint XXT = aX + bIn implies

X̃X̃T = aX̃ + bIn,

so
n∑

k=1

x̃2ki = ax̃ii + b, i = 1, 2, . . . , n. (15)

Therefore

x̃2ii ≤ ax̃ii + b,

that is

λ2 ≤ x̃ii ≤ λ1, i = 1, . . . , n. (16)

Partition X̃ by

X̃ =

 X11 X12 X13

X21 X22 X23

X31 X32 X33

 , (17)

then

trace((W +W T )X) = trace (Λ1X11 + Λ2X22) .

The question (6) is equivalent to

min
X11,X22

trace (Λ1X11 + Λ2X22) . (18)

With inequality (16), it is not difficult to verify

DX11 = λ2Ir1 , DX22 = λ1Ir2 .

Together with (15), we have

Xij = 0, i, j = 1, 2, 3, i ̸= j;

X11 = λ2Ir1 , X22 = λ1Ir2 .

Thus, we have the following theorem.

Theorem 1 Denote by W = aATA − 2ATB and
suppose an eigenvalue decomposition of the matrix
W +W T is

W +W T = Q

 Λ1

Λ2

On−r1−r2

QT ,

where

Λ1 = diag(λ+
1 , . . . , λ

+
r1),

Λ2 = diag(λ−
1 , . . . , λ

−
r2),

r1 + r2 = rank(W +W T ),
λ+
i > 0, λ−

j < 0,

i = 1, . . . , r1, j = 1, . . . , r2,
QTQ = In.

The general solutions of problem (2) with

XT = X and XXT = aX + bIn

constraints are

X = Q

 λ2Ir1
λ1Ir2

G

QT , (19)

where λ1, λ2 are determined by (12), the matrix G ∈
IRn−r1−r2×n−r1−r2 satisfies

GT = G, GGT = aG+ bIn−r1−r2

and a2 + 4b > 0.

Now we consider the two special cases of Theo-
rem 1. For a = 0, b = 1, the constraints are

XT = X, XXT = In, (20)

that is the symmetric orthogonal constraint, we have
the following corollary.

Corollary 2 Denote by W = −2ATB and suppose
an eigenvalue decomposition of the matrix W +W T

is

W +W T = Q

 Λ1

Λ2

On−r1−r2

QT ,

where

Λ1 = diag(λ+
1 , . . . , λ

+
r1),

Λ2 = diag(λ−
1 , . . . , λ

−
r2),

r1 + r2 = rank(W +W T ),
λ+
i > 0, λ−

j < 0,

i = 1, . . . , r1, j = 1, . . . , r2,
QTQ = In.
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The general solutions of problem (2) with symmetric
orthogonal constraint (see (20)) are

X = Q

 −Ir1
Ir2

G

QT , (21)

where G ∈ IRn−r1−r2×n−r1−r2 satisfies

GT = G, GGT = In−r1−r2 .

For a = 1, b = 0, the constraints are

XT = X, XXT = X, (22)

that is the symmetric idempotent constraint. And we
also have the following corollary.

Corollary 3 Denote by W = ATA − 2ATB and
suppose an eigenvalue decomposition of the matrix
W +W T is

W +W T = Q

 Λ1

Λ2

On−r1−r2

QT ,

where

Λ1 = diag(λ+
1 , . . . , λ

+
r1),

Λ2 = diag(λ−
1 , . . . , λ

−
r2),

r1 + r2 = rank(W +W T ),
λ+
i > 0, λ−

j < 0,

i = 1, . . . , r1, j = 1, . . . , r2,
QTQ = In.

The general solutions of problem (2) with symmetric
idempotent constraint (see (22)) are

X = Q

 Or1

Ir2
G

QT , (23)

where G ∈ IRn−r1−r2×n−r1−r2 satisfies

GT = G, GGT = G.

2.2 Case s = −1

For s = −1, W = ATB and W − W T is skew-
symmetric, we consider

min
XT=−X, XXT=bIn

trace((W −W T )X). (24)

Let a real Schur decomposition of the matrix W−W T

be

W −W T = Q

(
C

On−2r

)
QT , (25)

where

C = diag(C1, . . . , Cr),

Ci =

(
0 ci

−ci 0

)
, ci > 0,

2r = rank(W −W T ), i = 1, . . . , r.
QTQ = In.

Set X̃ = QTXQ and denote

X̃ = (x̃ij), i, j = 1, 2, . . . , n.

We have

((W −W T )X)2i−1,2i−1 = cix̃2i,2i−1

and

((W −W T )X)2i,2i = −cix̃2i−1,2i

with i = 1, 2, . . . , r. The constraints XT = −X and
XXT = bIn imply

X̃T = −X̃, X̃X̃T = bIn,

so
n∑

k=1

x̃2ki = b, i = 1, 2, . . . , n. (26)

To solve the equation (24), we have

x̃2i−1,2i =
√
b, i = 1, 2, . . . , r. (27)

Together with (26), the following equalities hold:

X̃ =


D̃b

. . .
D̃b

G

 ,

where D̃b is defined by (8), and G is arbitrary. Thus,
the following theorem holds.

Theorem 4 Denote by W = ATB and suppose a
real Schur decomposition of W −W T is

W −W T = Q

(
C

On−2r

)
QT ,

where

C = diag(C1, . . . , Cr),

Ci =

(
0 ci

−ci 0

)
, ci > 0,

2r = rank(W −W T ), i = 1, . . . , r,
QTQ = In.
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The general solutions of problem (2) with

X = −XT and XXT = bIn

constraints are

X = Q


D̃b

. . .
D̃b

G

QT ,

where D̃b is defined by (8) and G ∈ IRn−2r×n−2r sat-
isfies

GT = −G, GTG = bIn.

Remark 5 1) In this problem, a = 0 is based on the
following observation:

XXT = (XXT )T

= (aX + bIn)
T

= −aX + bIn,

which implies that a = 0.
2) For b = 1, the constraint is skew-symmetric

orthogonal.

3 Solutions to the balanced Pro-
crustes problem with correspond-
ing P -commuting constraints

In this section, we generalize the constraints to their
corresponding P -commuting constraints with given
symmetric matrix P , that is, we want to consider the
problem (2) with

PX = XP, XT = sX and XXT = aX + bIn

constraints.
Let an eigenvalue decomposition of P be

P = V diag(λ̄1Ik1 , · · · , λ̄pIkp)V
T , (28)

where V TV = In, ki is the multiples of eigenvalues
λ̄i satisfying Σp

i=1ki = n. Note that a matrix X satis-
fies

PX = XP

if and only if

X = V diag(X1, · · · , Xp)V
T , (29)

where
Xi ∈ IRki×ki , i = 1, . . . , p.

If X is further required to satisfy XT = sX and
XXT = aX + bIn, then all {Xi}pi=1 in (29) should
satisfy the same constraints too, that is,

XT
i = sXi, XiX

T
i = aXi + bIki ,

i = 1, . . . p.

Denote by W̃ = V TWV with W = aATA−2sATB.
And partition the matrix

W̃ = (Wij)

conforming to (29). So the constrained solutions are
represented by X = V diag(X1, · · · , Xp)V

T , where
Xi satisfies

min
XT

i =sXi, XiXT
i =aXi+bIki

trace(Xi(Wii + sW T
ii )),

i = 1, . . . , p,

which can be solved by Theorem 1 and Theorem 4.
Hence, we have the following theorems.

Theorem 6 Denote by W̃ = V TWV with W =
aATA − 2ATB, and the matrix V is determined by
(28). We partition the matrix W̃ = (Wij) conforming
to (29), where

Wij ∈ IRki×kj .

Let an eigenvalue decomposition of the matrix Wii +
W T

ii be

Wii +W T
ii = Qi


Λ
(i)
1

Λ
(i)
2

O
n−r

(i)
1 −r

(i)
2

QT
i ,

where

Λ
(i)
1 = diag(λ

(i)
1

+
, . . . , λ

(i)

r
(i)
1

+
),

Λ
(i)
2 = diag(λ

(i)
1

−
, . . . , λ

(i)

r
(i)
2

−
),

r
(i)
1 + r

(i)
2 = rank(Wii +W T

ii ),

λ
(i)
j

+
> 0, λ

(i)
k

−
< 0,

j = 1, . . . , r
(i)
1 , k = 1, . . . , r

(i)
2 .

QT
i Qi = Iki .

The solutions to the problem (2) with

PX = XP, XT = X and XXT = aX + bIn

constraints are

X = V diag(X1, · · · , Xp)V
T ,
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where

Xi = Qi


λ2Ir(i)1

λ1Ir(i)2

Gi

QT
i ,

λ1, λ2 are determined by (12), and the matrix Gi ∈
IR(ki−r

(i)
1 −r

(i)
2 )×(ki−r

(i)
1 −r

(i)
2 ) satisfies

GT
i = Gi, GiG

T
i = aGi + bI

ki−r
(i)
1 −r

(i)
2

.

Theorem 7 Denote by W̃ = V TWV with W =
ATB, and the matrix V is determined by (28). We
partition the matrix W̃ = (Wij) conforming to (29),
where Wij ∈ IRki×kj . Let a real Schur decomposition
of the matrix Wii −W T

ii be

Wii −W T
ii = Qi

(
C(i)

Oki−ri

)
QT

i , (30)

where

C(i) = diag(C
(i)
1 , . . . , C

(i)
ri ),

C
(i)
j =

(
0 c

(i)
j

−c
(i)
j 0

)
,

2ri = rank(W T
ii −Wii),

c
(i)
j > 0, j = 1, . . . , ri,

QT
i Qi = Iki .

The solutions to the problem (2) with

PX = XP, XT = −X and XXT = bIn

constraints are

X = V diag(X1, · · · , Xp)V
T

with

Xi = Qidiag(D̃b, . . . , D̃b, Gi)Q
T
i ,

where D̃b is defined by (8) and Gi ∈ IRki−2ri×ki−2ri

satisfies

GT
i = −Gi, GiG

T
i = bIki−2ri .

4 The least squares problem of one
extended matrix equations with
the same constraints

In this section, we consider the least squares problems
of the extended matrix equations

AX = B, XC = D (31)

with the same constraints, where matrices

A, B ∈ IRm×n, C, D ∈ IRn×p.

That is, we want to consider the following least
squares problem

min
X

∥
(

AX −B
CTXT −DT

)
∥F (32)

with

XT = sX and XTX = aX + bIn

constraints. Note that (32) is equivalent to

min
X

∥ÃX − B̃∥F (33)

with

Ã =

(
A

sCT

)
, B̃ =

(
B
DT

)
.

Hence, their constrained least squares solutions can
been obtained in terms of Theorem 1, Theorem 4,
Theorem 6 and Theorem 7 only by replacing A = Ã
and B = B̃ in W , respectively. Therefore, we have
the following theorems.

Theorem 8 Denote by

W = a(ATA+ CCT )− 2(ATB + CDT ),

and suppose an eigenvalue decomposition of the ma-
trix W +W T is

W +W T = Q

 Λ1

Λ2

On−r1−r2

QT ,

where

Λ1 = diag(λ+
1 , . . . , λ

+
r1),

Λ2 = diag(λ−
1 , . . . , λ

−
r2),

r1 + r2 = rank(W +W T ),
λ+
i > 0, λ−

j < 0,

i = 1, . . . , r1, j = 1, . . . , r2,
QTQ = In.

The general solutions of problem (2) with

XT = X and XXT = aX + bIn

constraints are

X = Q

 λ2Ir1
λ1Ir2

G

QT , (34)

where λ1, λ2 are determined by (12), and the matrix
G ∈ IRn−r1−r2×n−r1−r2 satisfies

GT = G, GGT = aG+ bIn−r1−r2 .
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Theorem 9 Denote by W̃ = V TWV with

W = a(ATA+ CCT )− 2(ATB + CDT ),

and the matrix V is determined by (28). We partition
the matrix W̃ = (Wij) conforming to (29), where
Wij ∈ IRki×kj . Let an eigenvalue decomposition of
the matrix Wii +W T

ii be

Wii +W T
ii = Qi


Λ
(i)
1

Λ
(i)
2

O
n−r

(i)
1 −r

(i)
2

QT
i ,

where

Λ
(i)
1 = diag(λ

(i)
1

+
, . . . , λ

(i)

r
(i)
1

+
),

Λ
(i)
2 = diag(λ

(i)
1

−
, . . . , λ

(i)

r
(i)
2

−
),

r
(i)
1 + r

(i)
2 = rank(Wii +W T

ii ),

λ
(i)
j

+
> 0, λ

(i)
k

−
< 0,

j = 1, . . . , r
(i)
1 , k = 1, . . . , r

(i)
2 .

QT
i Qi = Iki .

The solutions to the problem (2) with

PX = XP, XT = X, and XXT = aX + bIn,

constraints are

X = V diag(X1, · · · , Xp)V
T ,

where

Xi = Qi

 λ2I
λ1I

Gi

QT
i ,

λ1, λ2 are determined by (12), and the matrix Gi ∈
IR(ki−r

(i)
1 −r

(i)
2 )×(ki−r

(i)
1 −r

(i)
2 ) satisfies

GT
i = Gi, GiG

T
i = aGi + bI

ki−r
(i)
1 −r

(i)
2

.

Theorem 10 Denote by W = ATB + CDT and
suppose a real Schur decomposition of the matrix
W −W T be

W −W T = Q

(
C

On−2r

)
QT ,

where

C = diag(C1, . . . , Cr),

Ci =

(
0 ci

−ci 0

)
, ci > 0,

2r = rank(W −W T ), i = 1, . . . , r,
QTQ = In.

Then the general solutions of problem (2) with

XT = −X and XXT = bIn

constraints are

X = Qdiag(D̃b, . . . , D̃b, G)QT , (35)

where D̃b is defined by (8) and G ∈ IRn−2r×n−2r sat-
isfies

GT = −G, GGT = bIn−2r.

Theorem 11 Denote by W̃ = V TWV with W =
ATB+CDT , and the matrix V is determined by (28).
We partition the matrix W̃ = (Wij) conforming to
(29), where Wij ∈ IRki×kj . Let a Schur decomposi-
tion of the matrix Wii −W T

ii be

Wii −W T
ii = Qi

(
C(i)

Oki−ri

)
QT

i , (36)

where

C(i) = diag(C
(i)
1 , . . . , C

(i)
ri ),

C
(i)
j =

(
0 c

(i)
j

−c
(i)
j 0

)
,

2ri = rank(Wii −W T
ii ),

c
(i)
j > 0, j = 1, . . . , ri,

QT
i Qi = Iki .

The solutions to the problem (2) with

PX = XP, XT = −X and XTX = bIn

constraints are

X = V diag(X1, · · · , Xp)V
T

with

Xi = Qidiag(D̃b, . . . , D̃b, Gi)Q
T
i ,

where D̃b is defined by (8) and Gi ∈ IRki−2ri×ki−2ri

satisfies

GT
i = −Gi, GiG

T
i = bIki−2ri .

5 Numerical Examples
In this section, we present some numerical examples
to illustrate the effectiveness of our theorems. For
simplicity, we set m = n = p and restrict all matrices
A, B, C D, E ∈ IRn×n.
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All examples are performed by MATLAB 7.3 on
a personal computer of the Intel Core2 Duo CPU
T7250 with 2G memory.

Example 1. In this example, let s = −1, a = 0, b = 1
in (3). We compare the algorithm based on Theorem
4 and that in [11] for the equation (1) with

XT = −X and XXT = In

constraints. The test matrices A, B are constructed
as follows:

A = U0diag(σ1, · · · , σr)V T
0 , (37)

B = U0diag(σ1, · · · , σr)([V0, Ṽ0]G0)
T ,

where

U0 ∈ IRm×r, V0 ∈ IRn×r, G0 ∈ IRn×r

are column orthogonal, Ṽ0 is the orthogonal comple-
ment of V0, the principle submatrix with order r of G0

is skew-symmetric, and the singular values σi, i = 1 :
r are uniformly distributed in the interval (0, 1).

It is not difficult to verify: if A and B are set by
(37), then we have

BBT = AAT , ABT = −BAT ,

so the equation (1) has a skew-symmetric orthogonal
(XT = −X and XTX = In constraints) solution.
Therefore, the residual error ∥AX − B∥F of an opti-
mal constrained least squares solution to the equation
(1) should be zero.

In Table 1, let numbers m = n be variant from
100 to 1000, r = 50, we list the experiment results
for different matrix sizes. For different n, the residual
error ∥AX − B∥F in both algorithms can also reach
10−13. Both the skew-symmetric error ∥XT + X∥F
and orthogonal error ∥XXT −In∥F in Theorem 4 can
reach 10−13, however those in [11] is only 10−5. And
CPU time of Algorithm in [11] is almost 1.5 times as
that of Theorem 4. From the computing results, our
algorithm will be better in skew-symmetric error and
orthogonal error.

Example 2. Let s = 1, a = 1 and b = 2, we test
the algorithm based on Theorem 1 (Corollary 2) for
the problem (2) with XT = X and XXT = X + 2In
constraint. The test matrix A with singular values are
set as follows,

[U, temp] = qr(1− 2 ∗ rand(n));
[V, temp] = qr(1− 2 ∗ rand(n));
d = rand(n, 1);
A = Udiag(d)V T ;

Table 1: The algorithm based on Theorem 4 and
that in [11] for the equation (1) with XT =
−X, and XXT = In constraint

n algorithm CPU(s) ∥AX − B∥F

100 Theorem 4 0.031 1.03*10−13

algorithm in [11] 0.078 2.32* 10−13

200 Theorem 4 0.20 1.91* 10−13

algorithm in [11] 0.27 4.94*10−13

300 Theorem 4 0.82 2.05* 10−13

algorithm in [11] 1.11 8.83* 10−13

500 Theorem 4 3.81 3.57* 10−13

algorithm in [11] 5.34 2.14* 10−13

700 Theorem 4 11.36 4.75*10−13

algorithm in [11] 16.26 2.31* 10−13

1000 Theorem 4 31.33 6.27* 10−13

algorithm in [11] 45.32 4.77* 10−13

n algorithm ∥XT + X∥F ∥XXT − In∥F

100 Theorem 4 2.69* 10−15 3.09* 10−13

algorithm in [11] 8.85* 10−06 1.11* 10−06

200 Theorem 4 3.96* 10−15 2.69* 10−15

algorithm in [11] 1.33* 10−06 1.69* 10−06

300 Theorem 4 5.11* 10−15 5.58* 10−14

algorithm in [11] 2.26* 10−06 3.01* 10−06

500 Theorem 4 6.84* 10−15 1.41* 10−14

algorithm in [11] 1.20* 10−06 1.53* 10−06

700 Theorem 4 8.25* 10−15 2.23* 10−14

algorithm in [11] 1.59* 10−06 2.07* 10−06

1000 Theorem 4 1.01* 10−14 1.21* 10−14

algorithm in [11] 9.23* 10−05 1.18* 10−05

and the matrix B are constructed by the following
rules,

c(1 : n/2) = 2; c(n/2 + 1 : n) = −1
[U, temp] = qr(1− 2rand(n));
X∗ = Udiag(c)UT ;
B = AX∗;

so the optimal residual will be zero.
We still let numbers m = n be variant from 100

to 1000. For different n, the residual precision ∥AX−
B∥F can reach 10−13. The symmetric error ∥XT −
X∥F is zero always, and the error ∥XXT−X−2In∥F
can reach 10−14. In Table 2, we list the CPU time,
∥AX−B∥F , and ∥XXT −X−2In∥F , respectively.
Since ∥XT −X∥F are zero always, we omit it.

Example 3. In this experiment, we test the effi-
ciency of our algorithms when the coefficient matri-
ces have different condition numbers. We ask for the
least squares problem (2) with symmetric idempotent
constraint (XT = X ,and XXT = X) by Theorem 1,

WSEAS TRANSACTIONS on MATHEMATICS Zhongyang Yuan, Yuyang Qiu

E-ISSN: 2224-2880 359 Issue 3, Volume 12, March 2013



Table 2: Solve the problem (2) with XT = X and
XXT = X + 2In constraints based on Theorem 1.

n = m CPU(s) ∥AX − B∥F ∥XXT − X − 2In∥F

100 0.14 2.57*10−14 9.91*10−14

200 0.45 5.25*10−14 1.87*10−14

300 0.95 7.91*10−13 3.03*10−14

500 1.24 1.62*10−13 1.73*10−14

700 3.20 1.89*10−13 7.94*10−14

1000 9.36 2.68*10−13 1.29*10−13

that is s = 1, a = 1, b = 0. The test matrix A with
singular values are set as follows,

[U, temp] = qr(1− 2 ∗ rand(n));
[V, temp] = qr(1− 2 ∗ rand(n));
d = [1 + rand(9 ∗ n/10, 1);

10−α ∗ (rand(n/10, 1) + 0.1)];
A = Udiag(d)V T ;

and, the matrix B are constructed by the following
rules,

c = rand(n, 1) > 0.5;
[U, temp] = qr(1− 2rand(n));
X∗ = Udiag(c)UT ;
B = AX∗;

where α > 0 is a constant that determines the mag-
nitudes of the condition number of A. In Table 3, we
list the experiment results for given n = 500. CPU
time almost remains unchangeable even the condition
number of A become bigger. The symmetric error
∥XT − X∥F keeps zeros always. The other items
listed are similar to the above example.

Table 3: Variant condition numbers for the problem
(2) with XT = X and XXT = X constraints, n =
500
Cond(A) CPU(s) ϵ ∥XXT − X∥F

1.94*102 5.37 1.95*10−12 8.47*10−14

1.87*103 5.46 1.65*10−12 8.53*10−14

1.84*104 5.45 2.11*10−12 8.96*10−14

1.41*105 5.44 2.01*10−12 7.77*10−14

1.73*106 5.48 1.71*10−12 7.87*10−14

1.92*107 5.38 1.45*10−12 7.65*10−14

1.49*107 5.33 1.61*10−12 7.34*10−14

1.66*108 5.51 1.72*10−12 6.68*10−14

1.59*109 5.42 1.65*10−12 6.65*10−14

1.83*1010 5.39 1.55*10−12 8.97*10−14

1.15*1011 5.51 1.21*10−12 8.78*10−14

Example 4. Finally we test our algorithm for the
least squares problem of AX = B, XC = D with

PX = XP, XT = X and XXT = In

constraints. The symmetric matrix P with two differ-
ent eigenvalues is generated as follows:

[H, temp] = qr(1− 2 ∗ rand(n));
d = [repmat(1, [1, n/2]),

repmat(4, [1, n/2])];
P = Hdiag(d)HT .

The coefficient matrix A, C ∈ IRn×n are constructed
by

[UA, temp] = qr(1− 2 ∗ rand(n));
[VA, temp] = qr(1− 2 ∗ rand(n));
dA = rand(n, 1);
A = UAdiag(dA)V

T
A ;

[UC , temp] = qr(1− 2 ∗ rand(n));
[VC , temp] = qr(1− 2 ∗ rand(n));
dC = rand(n, 1);
C = UCdiag(dC)V

T
C ;

and B, D are constructed by

B = AHdiag(X1, X2)H
T ,

and
D = Hdiag(X1, X2)H

TC,

where Xi, i = 1, 2 are symmetric orthogonal matri-
ces generated by following rule:

[UXi , temp] = qr(1− 2rand(n/2));
dXi = 1− 2rand(n/2, 1);
Xi = UXidiag(sign(dXi))U

T
Xi
.

The numerical results in Table 4 show that our algo-
rithm is effective for this constrained problem.

6 Conclusion
In this paper, we consider the balanced Procrustes
problem with X = sXT and XXT = aX + bIn
for given numbers a, b. By one time eigenvalue de-
composition or real Schur decomposition of the ma-
trix product generated by the matrices A and B, we
construct the constrained solutions simply. We also
generalize these conclusions to the problem with cor-
responding P -commuting constraints with given sym-
metric matrix P and the extended equations AX = B,
XC = D with the same constraints.
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Table 4: The PX = XP, XT = X and XXT = In
constrained solutions to the least squares problem of
AX = B, XC = D

n CPU(s) ∥
(

B − AX
D − XC

)
∥F ∥XT − X∥F

100 0.15 1.49*10−14 2.23*10−14

200 0.79 3.78*10−14 1.43*10−14

400 5.36 6.35*10−14 1.65*10−14

600 15.45 7.39*10−14 1.78*10−14

800 37.11 2.55*10−13 1.54*10−14

n CPU(s) ∥XXT − In∥F ∥PX − XP∥F

100 0.15 2.43*10−14 2.42*10−13

200 0.79 5.64*10−14 3.54*10−13

400 5.36 1.34*10−14 3.66*10−13

600 15.45 5.53*10−14 5.68*10−13

800 37.11 8.89*10−13 3.64*10−12

Acknowledgements: The authors are grateful to ref-
eree and Professor Zhenyue Zhang (Department of
Mathematics, Zhejiang University, Yuquan Campus,
Hangzhou, 310027, P. R. China) for their enlightening
suggestions. Moreover, the research was supported in
part by the Natural Science Foundation of Zhejiang
Province and National Natural Science Foundation of
China (Grant Nos. Y6110639, 11201422)..

References:

[1] L. E. Andersson and T. Elfving, A constrained
Procrustes problem, SIAM J. Matrix Anal.
Appl., 18(1), 1997, pp. 124-139.

[2] A. W. Bojanczyk and A. Lutoborski, The Proc-
srustes Problem for Orthogonal Stiefel Matrices,
SIAM J. Sci. Comp., 21(4), 1999, pp. 1291-
1304.

[3] F. Crosilla and A. Beinat, Use of general-
ized Procrustes analysis for the photogrammetric
block adjustment by independent models, ISPRS
Journal of Photogrammetry and Remote Sens-
ing, 56(3), 2002, pp. 195-209.

[4] L. Eldén and H. Park, A Procrustes problem
on the Stiefel manifold, Numerische Mathe-
matik, 82(4), 1999, pp. 599-619.

[5] G. H. Golub and C. F. Van Loan, Matrix Com-
putations, Johns Hopkins University Press, Bal-
timore, Maryland, 3rd edition, 1996.

[6] J. C. Gower, Generalized Procustes analysis,
Psychometrika, 40(1), 1975, pp. 33-51.

[7] J. C. Gower and G. B. Dijksterhuis, Procrustes
problems, Oxford University Press, New York,
2004.

[8] N. J. Higham, The symmetric Procrustes prob-
lem, BIT, 28, 1988, pp. 133-143.

[9] U. Kintzel, Procrustes problems in finite dimen-
sional indefinite scalar product spaces, Linear
Algebra Appl., 402, 2005, pp. 1-28.

[10] J. Kiskiras and G. D. Halikias, A note on the
complex semi-definite matrix Procrustes prob-
lem, Numer. Linear Algebra Appl., 14, 2007, pp.
485-502.

[11] C. J. Meng, X. Y. Hu and L. Zhang, The skew-
symmetric orthogonal solutions of the matrix
equation AX = B, Linear Algebra Appl., 402,
2005, pp. 303-318

[12] C. J. Meng and X. Y. Hu, The inverse prob-
lem of symmetric orthogonal matrices and its
optimal approximation, Mathematica Numerica
Sinica, 28(3), 2006, pp. 269-280.

[13] Z. Y. Peng and X. Y. Hu, The reflexive and anti-
reflexive solutions of the matrix equation AX =
B, Linear Algebra Appl., 375, 2003, pp. 147-
155.

[14] P. H. Schönemann, A Generalized Solution of
The Orthogonal Procrustes Problem, Psychome-
trika, 31(1), 1966, pp. 1-10.

[15] Y. Qiu and A. Wang, Solving balanced Prorutes
problem with some constraints by eigenvalue de-
composition, Journal of Computational and Ap-
plied Mathematics, 233, 2010, pp. 2916-2924.

[16] J. ten Berge and K. Nevels, A general solution
to Mosier’s oblique procrustes problem, Psy-
chometrika, 42(4), 1977, pp. 593-600.

[17] Q. Wang, S. Yu and C. Li, Extreme ranks of
a linear quaternion matrix expression subject
to triple quaternion matrix equations with ap-
plications, Applied Mathematics and Computa-
tion, 195, 2008, pp. 733-744.

[18] Q. Wang, H. Chang and C, Lin, P-(skew) sym-
metric common solutions to a pair of quater-
nion matrix equations, Applied Mathematics and
Computation, 195, 2008, pp. 721-732.

[19] Q. Wang, J. W. van der Woude and H. Chang,
A system of real quaternion matrix equations
with applications, Linear Algebra and its Appli-
cations, 431, 2009, pp. 2291-2303.

WSEAS TRANSACTIONS on MATHEMATICS Zhongyang Yuan, Yuyang Qiu

E-ISSN: 2224-2880 361 Issue 3, Volume 12, March 2013




